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Abstract. Human-robot interaction is a complex field of robotics in
which robots are required to deal with different challenging issues. Among
other skills, HRI-capable robots need to generate plans taking humans
into account. To achieve this robots require sufficiently efficient data
structures and rich information about their environment as well as about
humans and their abilities. An additional requirement when robots are
supposed to actively find and classify objects is the capability of reason-
ing about the creation and retyping of the symbols corresponding to the
objects as a result of the actions of their plans. This paper describes how
these requirements can be met using a combination of dynamic graph-
like world models and a planning system based on graph-rewriting rules.
To demonstrate how the approach can be applied, the paper builds upon
a robot butler use-case, describing how its world model is structured and
its most relevant planning rules. Qualitative and quantitative experimen-
tal results are also provided.
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1 INTRODUCTION

The Human-Robot Interaction (HRI) community aims for robots capable of suc-
cessful interaction with human beings. These interactions are generally complex:
robots must usually take into account not only their knowledge about the objects
in the environment but also knowledge about the humans they interact with and
the knowledge they may have. It must be especially noted that for successful in-
teraction robots must be endowed with a theory of mind [2], enabling them to
understand how the knowledge of humans is updated as new events occur. For
example, when a human commands a robot to bring an object, the robot should
not necessarily stop when the object is close to the human but when it is close
and the human realizes that. To infer the knowledge of the humans a robot in-
teracts with it must be able to take their perspective to compute and keep track
of the objects they see [15]. Indeed, some goals must be planned taking into
account the beliefs of the robots on the knowledge of the humans instead of the



(a) Model example (b) Attribute map.

Fig. 1. a) depicts the model of the robotic butler after detecting a human and a table.
The model also shows that the robot believes that the human knows about the table
(more information in Sec. 3). The labels of the edges indicate: interact, that the robot
interacts with another agent; eq, correspondence between the knowledge a robot holds
on an object and the one it estimates is held by another agent; know is used to denote
the owner of objects; and prop is used to add properties to objects. b) provides an
example of the attribute map a table object could have.

direct knowledge of the robots. Moreover, when performing a collaborative task
involving a human, having knowledge on human’s knowledge allows the robot
to communicate and synchronize the information required to execute the plan.

Reasoning about the perceptual state of humans as a means to achieve the
goals of the robots requires sophisticated reasoning rules and appropriate data
structures [18]. To satisfy their information requirements efficiently robots need
metric and symbolic information. Metric information is necessary for low level
reasoning, generally about statements regarding the physical world, while sym-
bolic information is required to work with higher-level information. Symbolic
facts are generally stored as sets of predicates, which are equivalent to labeled
hyper-graphs (i.e., hyper-graphs whose edges are labeled). For example, a pred-
icate (travel A B t) can be seen as an edge labeled as travel associated to the
(A,B, t) vertex tuple. However, hybrid models combining metric and symbolic
properties in the same structure are gaining importance in the last years, graph
models and equivalents in particular [3, 4, 11, 16].

The work presented in [4] uses models particularly similar to the ones pro-
posed here or in previous work by the authors [16] as a means to integrate
perception, control, planning and coordination. The present paper also suggests
using hybrid models, specifically, an extension of the concept of attributed graph
previously presented in [16], where an attributed graph G∗ is defined as a tuple
of two sets (V ∗, E∗), being V ∗ a set of vertexes –symbols– with a type and an
identifier (that can also be attributed with additional metric properties), and E∗

a set of labeled edges. Each vertex in V ∗ contains a map of properties that can
be used to store the metric attributes of the symbol they represent. Edges in E∗

are labeled with a string used to identify the nature of the edge (see figure 1).
While the theoretical expressive power of this data structure is not higher than



the one of a regular graph, we suggest that they make understanding models
easier for humans and, in contrast to the hypergraphs used in the Planning Do-
main Definition Language (PDDL) [17] their graphical representation can be
easily automated [12].

The contributions of the paper are threefold: a) we demonstrate how graph
models can be applied to HRI domains, supporting to some extent a theory of
mind for robots; b) we present a new visual planning domain definition language
named Active Graph Grammar Language (AGGL) that is designed to work with
dynamic graph models; and c) we evaluate the performance of a novel AGGL-
based planner named AGGLPlanner in HRI domains.

The remainder of the paper is organized as follows. Section 2 introduces the
AGGL domain specification language. Section 3 describes how graph models and
graph-rewriting rules can be used to represent the knowledge and the domain
of a robotic butler endowed with some features of a theory of mind. Sections 4
and 5 present the experimental results obtained and the conclusions that can be
extracted from the paper, respectively.

2 THE ACTIVE GRAPH GRAMMAR LANGUAGE

Regarding the planning rules that robots can use when looking for valid plans to
reach their goals, there is a limitation that is not usually met in regular planning
systems (in particular those based on PDDL). Such limitation is that planning
languages (and therefore their corresponding planners) do not natively support
creating, deleting nor retyping symbols as a consequence of the execution of
planning actions, that is, the number of symbols and their type is fixed. This
makes harder to generate domains in which the robot is able to discover, forget
or reconsider the type of objects, which is an essential requirement for different
tasks, including planning perceptive tasks [6, 14]. While there are workarounds
to overcome the limitation, they make domain description files harder to read
(especially when the actions are complex) and decrease the efficiency of plan-
ners (see [14] and section 4). Additionally, the efficiency of state-of-the-art PDDL
planners heavily decreases with the number of parameters of the actions. Since
HRI planning actions are often complex, this scalability issue represents a no-
ticeable problem. On the other hand, the efficiency loss can be overcome splitting
complex planning actions in several virtual actions with fewer parameters but,
again, this solution makes domains harder to read and no longer reflect the ac-
tual domain. The Active Graph Grammar Language (AGGL) was created from
the motivation that only computers should deal with this kind of optimizations
and that the work of domain designers should be made as easy as possible.

AGGL can be seen as an extension of PDDL [17] with two advantages: one
regarding readability and another regarding the power of the language. One
of the drawbacks of PDDL and most textual planning languages is that com-
plex actions such as the ones needed for HRI are hard to write and read. The
readability of the rules decreases with the number of symbols and predicates in
the actions, and when these numbers are high they are difficult to understand.



Listing 1.1. This code is the PDDL-equivalent of the graphical rule described in Fig. 2.
This kind of textual description is harder to understand and requires more training.
Predicates ISxxx are used to allow dynamic symbol typing. Predicates firstunknown
and vOrd are used to maintain a list of symbols available to use (see [14]). The rest of
the predicates have the same meaning as the edges in Fig. 2.

(: action tellHumanAboutUnknownObject

:parameters ( ?p ?c ?r ?vo ?h ?lstAux ?aux0 ?aux1 ?aux2

?aux3 ?aux4 )

:precondition (and (ISpose ?p) (ISclassFail ?c) (ISrobot ?r)

(ISobject ?vo) (IShuman ?h) (firstunknown ?aux4)

(vOrd ?aux4 ?aux3) (vOrd ?aux3 ?aux2) (vOrd ?aux2 ?aux1)

(vOrd ?aux1 ?aux0) (vOrd ?aux0 ?lstAux) (know ?r ?vo)

(interact ?r ?h) (prop ?vo ?p) (prop ?vo ?c) )

:effect (and (not(firstunknown ?aux4))

(firstunknown ?lstAux) (ISreach ?aux4) (ISsee ?aux3)

(ISpose ?aux2) (ISnoClass ?aux1) (ISobject ?aux0)

(prop ?aux0 ?aux2) (prop ?aux0 ?aux3) (eq ?vo ?aux0)

(prop ?aux0 ?aux4) (know ?h ?aux0) (prop ?aux0 ?aux1) )

)

Readability declines even more when users have to implement the workaround
introduced in [14] to get rid of the limitation of PDDL regarding symbol creation
and deletion (code listing 1.1 provides an example of this issue).

To solve these problems AGGL allows users to describe planning actions
visually as graph grammar rules [16] (see Fig. 2). They are defined as pattern
pairs, in the same way as string grammar rules: each rule states that the pattern
in the left-hand side can be replaced with the pattern in the right-hand side. Each
node in these rules has two strings, the upper one corresponds to the identifier
of a parameter and the one in the bottom to its type. New symbols (those
which only appear in the right-hand side pattern) are automatically highlighted
in green by the editing tool, symbols which are going to be deleted (those in
the left-hand side pattern only) are highlighted in red, and the symbols whose
type is modified by the rule are highlighted in gray. As can be appreciated
comparing Fig. 2 and List. 1.1, AGGL helps improving the readability of domain
descriptions.

Since there are some features that can not be easily expressed graphically
(e.g., quantifiers), AGGL allows users to write additional precondition and ef-
fect clauses. These clauses extend the PDDL semantics by including three new
capabilities necessary for some perception and HRI-related tasks which are not
present even in the newest extension of PDDL:

– retype: allows to change the type of existing symbols e.g., (retype name
new type).

– create: is used to create new symbols and specify their type e.g., (create
name type).



(a) Left Hand Side (LHS)

(b) Right Hand Side (RHS)

Fig. 2. An AGGL planning action used in a robot butler to allow the robot share
information with humans. In particular, this rule is associated to the fact that robots
can show humans objects they do not know, for example, to ask them about the
objects later. The symbol r denotes a robot, h a human, o an object that the robot
knows about, and p and o are properties of the object indicating that its pose is known
but its classification is not. The execution of the action implies that five new symbols
would be created: an object oh associated to the human which refers to the same object
that o does but with different properties.

– delete: allows to destroy a symbol given its name e.g., (delete name).

Previous work by the authors [16] proposed a translator from an early ver-
sion of AGGL to PDDL in order to avoid writing textual planning rules (such as
the one in List. 1.1) while allowing creating and deleting objects dynamically [16].
However, this approach has efficiency issues. The most efficient domain-independent
planners perform an initial instantiation phase (known as grounding) which gen-
erates a full instantiation of the possible actions as a prelude to the search pro-
cess. This phase is used to compute efficient heuristics to guide the search process,
but often leads to a combinatorial explosion if the problem has a considerable
size or if the actions have a large number of parameters [8], specially if the do-
mains require (simulating) symbol creation as it is the case of active perception
domains. Some works such as [1] focus on minimizing the impact of the instan-
tiation phase by automatically splitting the actions of the domains into several
(virtual) actions with fewer parameters (i.e., the complexity of the instantiation
phase for an action grows exponentially with the number of its parameters).
Although it is a promising research direction, the PDDL subset supported by [1]
does not include forall nor exists PDDL clauses, which are necessary for most
real-life HRI domains. Other works are focused towards reducing the complexity



of the instantiation phase [7], however none of these improvements are sufficient
for the problems considered here. Thus, PDDL planners are –to the date– par-
ticularly unsuitable for perception and HRI tasks for two key reasons: a) the
emulation of variable-sized worlds is inefficient; and b) HRI-related planning
actions are complex in terms of the number of parameters used, which makes
the instantiation phase grow out of control. The second issue could be circum-
vented breaking up actions manually, but this re-formulation is usually hard to
perform and has an undesirable impact on readability and maintainability: this
optimizations should only be performed automatically. The first issue has no
known solution.

In order to improve efficiency in scenarios of dynamic world sizes, where it
is necessary to work with complex rules, a new planner working natively with
AGGL was created. The planner, named AGGLPlanner , avoids the initial in-
stantiation phase and performs an A∗ search using the number of conditions met
as heuristic, checking all preconditions before instantiating new possible world
states. Avoiding the instantiation phase sacrifices the computation of efficient
heuristics that might speed up the search process, but it allows us to natively
support symbol creation, deletion and retyping, and prevents the otherwise in-
evitable combinatorial explosion. This makes the planner particularly useful in
domains with large number of symbols and parameters, where the complexity
lies more in the domain than in the length of the plan. Moreover, due to the
nature of the search process it was possible to implement macro operators, which
can be introduced manually [13] or automatically using machine learning tech-
niques [5]. Additionally, AGGLPlanner was made anytime (i.e., the user can
stop the planner at any time and still get the best plan among the valid ones
found, if any), which might be important in some scenarios. On the other hand,
due to the lack of sophisticated heuristics, the planner is not competitive versus
state of the art planners if the domain works with fixed-sized world models and
simple actions. Additional technical information regarding the planner is out of
the scope of the paper.

3 GRAPH MODELS FOR A ROBOTIC BUTLER

In this section and for the remainder of the paper we build on the example
of a robotic butler to show how different planning-related HRI phenomena can
be implemented using graph models and planning rules that can work with
dynamic world models. Only the most relevant of rules used in our experiment
will be described, since showing all of them would require too much space and
it would not provide valuable additional information. In particular we describe
three rules which allow the robot to find new objects, model unknown objects
and find human-aware plans to serve coffee.

The world model used in this work contains a symbol for each of the physical
agents (i.e., the robot and the humans) and an edge labeled as interact that
links the symbol of the robot to those of the humans the robot interacts with. To
make the robot able to plan complex tasks, taking into account not only its direct



knowledge but also its beliefs regarding the humans, the model holds duplicated
information for every object, containing potentially different data. This data
depends on the robot’s beliefs and relationships with the objects and the ones
of the humans (as perceived or expected by the robot). This is particularly
important because a considerable amount of goals are given –or should be given–
from a third-party perspective. For example, if a robot is given the goal “bring
me the ball”, the goal of the robot should not be just to take the ball close to
the human, but also ensure the human knows the ball is actually close to him
(bringing the ball to a human is generally useless until the human realizes its new
position). Therefore, for every object known by the robot, it creates a symbol
linked to the symbol of the robot (depicting that the robot is aware of the object)
and another for every human that the robot believes is aware of the same object.
Each object symbol is connected to other symbols whose types encode different
properties of the objects from the point of view of the agent they are associated
to (e.g., an object might be reachable from the point of view of the robot but not
from the one of the human). Finally, objects that are located in other objects
are linked to their container with an edge labeled as in. Fig. 1 depicts a small
example of the models used.

The symbols encoding the properties of the objects in this work can be: a) re-
lated to its classification status: that is, class, noClass or classFail (classFail
meaning that the robot failed to classify the object); b) a categorization sym-
bol (for the experiment we consider mug, table, coffeePot and milkPot symbols)
and c) other symbols related to the information or capabilities of the agents
in relation to the object: see/notSee, pose/notPose and reach/notReach. To ac-
quire perception-related facts (e.g., whether or not a human sees or can reach
an object) we assume the use of a third-party geometrical perspective-taking
modules such as the ones proposed in [20].

The rest of this section describes three of the most relevant planning rules
used in the robotic butler experiment, specifying how can the robot: find and
classify new objects, tell humans about objects it knows, and ask for help to
classify objects (taking into account that humans have some capabilities that
robots do not).

3.1 Object discovery

The rule for object discovery is the easiest to understand. It creates an object
symbol whose properties are: see (it is assumed to be seen because it is applied
when the robot discovers an object visually), pose (because it is seen its position
is known), noReach (if the object is actually reachable when discovered, the
robot can later update the property), and noClass (objects are initially assumed
to be unknown until they are inspected). The new object is linked to the symbol
of the robot. The rule, named findObjectVisually, is shown in Fig. 3.

Reachability is a precondition to execute the actions classifying objects, as
a means for active perception. This way the robot is enforced to approach to



(a) LHS (b) RHS

Fig. 3. Graphical representation of rule “findObjectVisually”.

the objects it intends to classify, to obtain a close view (the specification of the
complete set of planning rules can be obtained from the web page of the paper3).

3.2 Updating the properties of objects

Updating the properties of the objects can be a planned or an exogenous event,
and is reflected in the model held by the robot by changing the type of the
corresponding property. For example, when the robot realizes or plans to start
seeing an object, the event is reflected in the graph by changing the corresponding
notSee symbol to see. The same applies for the robot and humans, and for other
properties.

3.3 Cooperative perception

There are many different ways robots and humans can cooperate in perception
tasks. They can show each other objects they do not know or ask for the position
of an object both know. In order to be able to achieve these cooperative actions,
the individual beliefs and capacities of the agents (i.e., humans or robots) must
be represented. Among all the possibilities, the paper provides two examples
related to the experiment described in section 4.2: how can a robot tell a human
about an object it is unable to classify (Fig. 4, named showUnknownObject),
and how can the robot ask a human for the type of an unknown object (Fig. 5,
named humanTellsItsMilk).

The effect of rule “showUnknownObject” (Fig. 4) is that the robot assumes
the human knows the object. Therefore, the robot inserts the corresponding new
symbols (shown in green) and attaches them to the human symbol. The effect of
the rule “humanTellsItsMilk” (Fig. 5) is that the object is considered classified
from the point of view of the robot (changing the type of the parameter f , shown
in gray) and that a new type-symbol milkPot is created and associated to the
object. These rules are used in combination with another rule (not shown due
to space limitations) in which the human classifies the initially unknown object
as a milk pot.

3 Web page providing additional resource files related to this paper:
http://ljmanso.com/REACTS15



(a) LHS

(b) RHS

Fig. 4. Graphical representation of rule “showUnknownObject”.

4 EXPERIMENTAL RESULTS

Two different kind of results are provided. First, the comparison on how the
number of symbols available to create affects the execution time in different
planners, and second, the definition and execution of the experiment.

4.1 Impact of the number of available symbols

For this experiment the system was given a very simple task: finding a new ob-
ject. The experiment compared the execution time of AGGLPlanner with two
well-known planners: Metric-FF [10] (last version, 2.1) and FastDownward [9]
(several versions, obtaining similar results4). The planning problem (which re-
quires creating at least five new symbols) was given to Metric-FF, FastDownward
and AGGLPlanner. Metric-FF could not be successfully used because it crashed
during the instantiation process (it consumed all the computer’s memory). Fast-
Downward could solve the problem using a pool of new symbols from five (the
minimum necessary to solve the problem) to eight, but the execution time grew
exponentially with the number of such symbols (handling more memory caused
the same problem that Metric-FF had). Since AGGLPlanner avoids grounding,
it was not affected by the number of potential new symbols. The execution time
of the experiments is shown in Fig. 6 (in logarithmic scale).

4 Three versions of the FastDownward software repository fetched between June 2013
and January 2015 were tested, obtaining similar results.



(a) LHS

(b) RHS

Fig. 5. Graphical representation of rule “humanTellsItsMilk”.

The results, clearly favorable for AGGLPlanner, were obtained because it was
specially designed with the possibility of creating and deleting symbols in mind,
an objective that was not considered in the design of FastDownward, Metric-
FF or any other PDDL planner. Almost any other task not requiring symbol
creation nor complex actions would run faster in FastDownward, especially when
the search process requires complex heuristics. However, these preconditions are
seldom found in human-robot interaction domains in which the robot has to
reason about about humans’ beliefs and potentially find new objects.

The files used to run the experiment can be obtained from the web page
created for this paper (see footnote 3).

4.2 Serve coffee experiment

The experiment takes place in a kitchen environment, where a human and a
robot are interacting and at some point the human tells the robot to serve a cup
of coffee. The experiment assumes that the robot is endowed with third-party
modules to assess what the human knows, reaches and sees (e.g., [20]), that
the robot understands the order “serve me coffee” as “put milk, coffee and a
mug in a table reachable by the human”, and that the human and the robot are



Fig. 6. Execution time of AGGLPlanner and FastDownward for the task of finding a
new object. It must be noted that time is represented in logarithmic scale. AGGLPlan-
ner (in blue) is not affected by the number of symbols that the planner can create,
while the time required by FastDownward (in red) grows exponentially.

aware of the existence of a coffee pot in the table. Also, to force the robot to
cooperate with the human, it is assumed that the robot is unable to recognize
milk containers.

Because the table was not fully inspected, the first plan the robot provides
is an optimistic version in which it considers the possibility that it can find all
objects in the same table:

1. Find a new object in the table.
2. Recognize the object as a mug.
3. Show the mug to the human.
4. Find another object visually.
5. Classify the new object as unknown.
6. Show the unknown object to the human.
7. Wait for the human to classify the object as a milk pot.

While AGGLPlanner spent 32.649 seconds in the planning process, the ex-
periment failed to run using FastDownward or Metric-FF because of the memory
consumption requirements for the instantiation phase.

Of course, when implemented in the robot the plan could fail because there
could be no new objects in the table, so the execution of the plan would have to



be monitored. The goal of the experiment was not doing the experiment fast, but
demonstrating that the proposed approach could be used for several purposes,
including:

– Reasoning about finding and modeling new objects.
– Demonstrate how some basic features of a theory of mind can be integrated

in a robot using graph-models and graph-rewriting rules i.e., the robot shows
the human the objects to be sure the human is aware of them. It also takes
into account the different abilities of humans and robots when finding a plan.

5 CONCLUSIONS

This paper presented how graph-models and graph-rewriting rules can be used to
perform HRI tasks such as the one described in section 4.2, which requires some
features of a theory of mind and planning using dynamic world sizes. In order
achieve this, planning systems have to take into account not only the knowledge
of the robot but also its beliefs regarding the knowledge of the human it interacts
with and its abilities.

Despite its simplicity AGGLPlanner achieved better performance in compar-
ison to state-of-the-art PDDL planners. Its efficiency in comparison to the one
of FastDownward is derived from the fact that AGGLPlanner (which lacks of
sophisticated heuristics) does not perform grounding. It is a topic that maybe
deserves more attention in the planning community.

There are two aspects in which the authors plan extending AGGL: first,
including support for stochastic effects; and second, support for predicate and
cost evaluation using external programs (see [19]).
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